首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1632篇
  免费   150篇
  国内免费   7篇
电工技术   26篇
综合类   5篇
化学工业   382篇
金属工艺   70篇
机械仪表   73篇
建筑科学   23篇
能源动力   60篇
轻工业   172篇
水利工程   11篇
石油天然气   2篇
无线电   276篇
一般工业技术   385篇
冶金工业   71篇
原子能技术   54篇
自动化技术   179篇
  2023年   5篇
  2022年   8篇
  2021年   33篇
  2020年   20篇
  2019年   39篇
  2018年   50篇
  2017年   42篇
  2016年   67篇
  2015年   64篇
  2014年   80篇
  2013年   100篇
  2012年   101篇
  2011年   149篇
  2010年   86篇
  2009年   118篇
  2008年   104篇
  2007年   96篇
  2006年   71篇
  2005年   54篇
  2004年   49篇
  2003年   63篇
  2002年   45篇
  2001年   39篇
  2000年   30篇
  1999年   31篇
  1998年   49篇
  1997年   17篇
  1996年   20篇
  1995年   22篇
  1994年   12篇
  1993年   17篇
  1992年   6篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1981年   4篇
  1980年   4篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   8篇
  1970年   2篇
排序方式: 共有1789条查询结果,搜索用时 15 毫秒
31.
32.
Epoxidized soybean oil (ESO)/diglycidyl ether of bisphenol A (DGEBA) in various blend ratios (i.e. 100/0, 90/10, 80/20, 70/30, 60/40, 50/50) was thermally cured using methylhexahydrophthalic anhydride in the presence of 2‐ethyl‐4‐methylimidazole catalyst. The tensile properties and fracture toughness of the ESO/DGEBA thermoset blends were determined. Thermal properties of the blends were characterized using dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Blending of ESO and DGEBA gave synergistic effects on the modulus, strength, glass transition temperature and thermal stability. However, the fracture toughness and elongation at break of ESO/DGEBA blends are lower than those of ESO, as expected. The enhancement in certain mechanical and thermal properties of ESO/DGEBA can be associated with the crosslink density, gel content and possible interpenetrating network of the resulting thermoset blends. © 2013 Society of Chemical Industry  相似文献   
33.
The purpose of this study was to synthesize biocompatible poly(2-hydroxyethyl aspartamide)–C16-iron oxide (PHEA-C16-iron oxide) nanoparticles and to evaluate their efficacy as a contrast agent for magnetic resonance imaging of lymph nodes. The PHEA-C16-iron oxide nanoparticles were synthesized by coprecipitation method. The core size of the PHEA-C16-iron oxide nanoparticles was about 5 to 7 nm, and the overall size of the nanoparticles was around 20, 60, and 150 nm in aqueous solution. The size of the nanoparticles was controlled by the amount of C16. The 3.0-T MRI signal intensity of a rabbit lymph node was effectively reduced after intravenous administration of PHEA-C16-iron oxide with the size of 20 nm. The in vitro and in vivo toxicity tests revealed the high biocompatibility of PHEA-C16-iron oxide nanoparticles. Therefore, PHEA-C16-iron oxide nanoparticles with 20-nm size can be potentially useful as T2-weighted MR imaging contrast agents for the detection of lymph nodes.  相似文献   
34.
35.
The reformer that produces hydrogen from hydrocarbon is very important part of fuel cell system. One of the promising solutions has been recently considered as direct partial oxidation of hydrocarbon by excess enthalpy flame under rich and ultra-rich condition without a platinum catalyst. In this paper, excess enthalpy flame reforming process in the perforated silicon carbide tube reformer using a two dimensional approached with GRI mechanism 1.2 was investigated. The result shows that the stable excess enthalpy flame with temperature spike was observed in a perforated silicon carbide tube reformer under condition of higher equivalence ratio than rich flammability limit of methane. It is found that hydrogen rich gases could be produced through partial oxidation at very rich equivalence ratio by formation of excess enthalpy flame. The peak flame temperature of excess enthalpy flame was higher than the adiabatic flame temperature for a free laminar flame at identical conditions and excess enthalpy flame at ultra-rich equivalence ratio could become effective way to produce hydrogen rich gases from hydrocarbon. The conversion efficiency of hydrogen and carbon monoxide by partial oxidation of excess enthalpy flame was calculated as 37.64% and 60.62%, respectively at equivalence ratio of 2.0 and inlet velocity of 80 cm/s.  相似文献   
36.
We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green''s function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding π-bond model for graphene. We demonstrate how the exact self-energies due to the leads can be calculated in the NEGF-Dirac model. We apply our approach to GNR systems of different widths subjecting to different potential profiles to characterize their device physics. Specifically, the validity and accuracy of our approach will be demonstrated by benchmarking the density of states and transmissions characteristics with that of the more expensive transport calculations for the tight-binding π-bond model.  相似文献   
37.
Peculiar magnetic domain walls produced in Heusler alloys, which have attracted renewed interest due to their potential application to actuators and spintronic devices, are studied here using electron holography. The observations reveal unexpectedly narrow magnetic domain walls, the width of which showed perfect agreement with that of the antiphase boundaries (APB, e.g., only 3 nm). While the results can be explained by the significant depression of ferromagnetism due to the local chemical disorder, the electron phase shift indicates that ferromagnetic correlation still remains in the APB region.  相似文献   
38.
To enhance the performance of a polymer electrolyte membrane fuel cell (PEMFC), a Pt catalyst was supported on carbon nanotubes (CNTs) and the optimum content of Nafion ionomer in the Pt/CNT electrode was examined by cell performance tests, cyclic voltammetry, and electrochemical impedance spectroscopy. The amount of the Pt catalyst supported on the CNTs was 34 wt.%. The Nafion content significantly changed the protonic and electronic conductivities as well as the mass transfer properties. As such, the performance of the cell was highly dependent on the content of Nafion ionomer. The results of the cell performance tests revealed that the optimum content of Nafion ionomer in the Pt/CNT electrode was about 20 wt.%.  相似文献   
39.
The use of copper wire for semiconductor package assembly has been gradually gaining acceptance throughout the industry over the last decade. Although copper has several advantages over gold for wire bonding applications, the manufacturing difficulties using copper wire have made high volume, fine pitch copper bonding slow to materialize. In recent years with the spike in gold prices, copper wire has become even more attractive, and this has driven many studies on the topic.Due to the propensity for copper to work harden upon deformation, which occurs during the ball bonding process as the capillary tip smashes the ball into the bond pad, a high amount of stress is transferred into the bond pad structure. This can result in catastrophic defects such as dielectric cracking or pad cratering. The current study aims to quantify the level of underlying bond pad damage with respect to various bond pad metallization and barrier layer schemes. A first bond parameter optimization was completed on each experimental group. The results indicate that barrier layer structure and composition have a significant impact on the presence of pad cratering. The experimental group containing only TiN as the barrier material showed a high occurrence of cratering, while groups with Ti and TiW barrier metals showed no cratering, even if a TiN layer was on top of the Ti. The bond pad metal thickness, on the other hand, does not appear to play a significant role in the prevention of bond pad cratering. Metal thickness values ranging from 0.825 to 2.025 μm were evaluated, and none had bond pad cratering other than the group with TiN as the barrier metal. In addition to the first bond parameter evaluations with various bond pad and barrier metal combinations, the initial free air ball (FAB) optimization is discussed.  相似文献   
40.
The objective of this study was to investigate how the water uptake features and carrier characteristics of the TS-1 zeolite affected the physical and rheological properties, morphological parameters, and enzymatic hydrolysis of Poly (butylene succinate) (PBS). The introduction of TS-1 zeolite as catalyst was developed for the preparation of PBS/TS-1 zeolite hybrid composites (PTHC) without heavy metal toxic substance in the context on clean technology. The TS-1 zeolite can act as a catalyst as well as a reinforcement filler with the result that PTHC can show marked increases in tensile properties and elongation at breakage in the solid state. The rheological properties of PTHC with high zeolite contents showed low values of complex viscosity, as compared with PTHC with low TS-1 zeolite contents, due to the volatilization of water released from the zeolite pores during esterification. The introduction of the TS-1 zeolite in the PBS matrix was not significantly affected by changes in the size of the long period, lamella thickness, or the amorphous region, indicating that PBS chains do not penetrate into zeolite pores, as confirmed by SAXS profiles. In enzymatic hydrolysis over 90 days, the enzymatic hydrolysis rates of PTHC significantly accelerated with increasing TS-1 zeolite contents, compared with Homo PBS. This result indicated that TS-1 zeolite can act as a carrier for enzyme activation, resulting in enzymatic hydrolysis, occurring from the amorphous area on the surface into the inside of the film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号